The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Petter Pilesjö

Petter Pilesjö

Professor

Petter Pilesjö

Predictive risk mapping of human leptospirosis using support vector machine classification and multilayer perceptron neural network

Author

  • Mehrdad Ahangarcani
  • Mahdi Farnaghi
  • Mohammad Reza Shirzadi
  • Petter Pilesjö
  • A Mansourian

Summary, in English

Leptospirosis is a zoonotic disease found wherever human is in direct or indirect contact with contaminated water and environment. Considering the increasing number of cases of this disease in the northern part of Iran, identifying areas characterized by high disease incidence risk can help policy-makers develop strategies to prevent its further spread. This study presents an approach for generating predictive risk maps of leptospirosis using spatial statistics, environmental variables and machine learning. Moran's I demonstrated that the distribution of leptospirosis cases in the study area in Iran was highly clustered. Pearson’s correlation analysis was conducted to examine the type and strength of relationships between climate and topographical factors and incidence of the disease. To handle the complex and nonlinear problems involved, machine learning based on the support vector machine classification algorithm and multilayer perceptron neural network was exploited to generate annual and monthly predictive risk maps of leptospirosis distribution. Performance of both models was evaluated using receiver operating characteristic curve and Kappa coefficient. The output results demonstrated that both models are adequate for the prediction of the probability of leptospirosis incidence.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • Centre for Geographical Information Systems (GIS Centre)
  • Centre for Advanced Middle Eastern Studies (CMES)

Publishing year

2019-05-14

Language

English

Pages

53-61

Publication/Series

Geospatial health

Volume

14

Issue

1

Document type

Journal article

Publisher

University of Naples Federico II

Topic

  • Earth and Related Environmental Sciences

Keywords

  • Machine Learning (ML)
  • Geospatial Artificial Intelligence (GeoAI)
  • Artificial Intelligence (AI)
  • health
  • Epidemiology
  • Support vector machine (SVM)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1827-1987