The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Petter Pilesjö

Petter Pilesjö

Professor

Petter Pilesjö

Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden

Author

  • Lars Eklundh
  • Karin Hall
  • Helena Eriksson
  • Jonas Ardö
  • Petter Pilesjö

Summary, in English

The study aims at investigating the use of Landsat thematic mapper (TM) for mapping leaf area index (LAI) in coniferous and deciduous forests in southern Sweden. LAI has been estimated in the field with optical measurements, allometric equations, and litter-trap data, and empirical relationships between LAI estimates and satellite-measured reflectances have been analysed. Several common vegetation indices and multiple regressions where estimated LAI is predicted as a function of various spectral bands are tested. The results indicate significant relationships between Landsat TM reflectances and parameters related to LAI, and the relationships are improved when separating coniferous and deciduous stands. The best relationships occur between Landsat TM data and the product of effective LAI as estimated with the LAI-2000 instrument and a needle clumping factor (L-G), which explains about 80% of the variation in coniferous stands and about 50% of the variation in deciduous stands. The best single bands in coniferous stands are the middle-infrared bands (TM5 and TM7), and the best vegetation index is the moisture stress index (TM5/TM4). The best single band in deciduous stands is TM4, and the best vegetation index is the simple ratio (SR).

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2003

Language

English

Pages

349-362

Publication/Series

Canadian Journal of Remote Sensing

Volume

29

Issue

3

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1712-7971